Introduction to Motion

Scalars and Vectors

All physical quantities can be divided into two groups – scalers and vectors

When determining if a quantity is a vector or a scaler you need to ask 1 question, does direction matter?

- Vector quantity with both magnitude (size or numerical value) and direction
- Scalar quantity with magnitude (size or numerical
 value) only

Do you know the difference?

Quantity	Category
5 m	Scalar
30 m/sec, East	Vector
5 mi., North	Vector
456 cm	Scalar
5.04 m South East	Vector
615km	Scalar

- A frame of reference is referred to as a coordinate system.
- A coordinate system in one dimension is represented by an x axis with the origin located at x = 0.
- Once an origin and a positive direction are chosen, they must be used consistently.

- The letter *x* is used to label position.
- An arrow drawn from the origin of a coordinate system to an object is referred to as the object's position vector.
- Whenever an object is in motion, its position is changing.

Initial and final positions are indicated with x_i and x_f, respectively.

- Distance (d) is the total length of the path taken on a trip.
 - No direction is associated with distance. It is a scalar quantity.
 - The SI unit of distance is the meter (m).
 - When walking, distance is measured with a pedometer.
 - In a car, the distance is measured using an odometer.

- Displacement (∆x) is defined as an object's change in position.
 - Displacement is a vector having both magnitude and direction.
 - The SI unit of displacement is the meter (m).
- Examples of directions:
 - •+ and –
 - •N, S, E, W
 - Angles

How to remember

D I. S. T. A. N. C. E Traveled Total

D. I. S. P. L. A. C. E. M. E. N. T Position Change

- Displacement is represented by the symbol Δx .
- Δx is shorthand for $x_f x_i$. It does not mean Δ times x.
- Δx is <u>positive</u> when the change in position is in the positive direction and <u>negative</u> when the change in position is in the <u>negative direction</u>.

(b)

- <u>Distance</u> is the total length traveled; <u>displacement</u> is the net change in position.
- An object's displacement is zero when it returns to its starting point, even though it may have traveled a considerable distance.

Video Example

https://www.youtube.com/watch?v=9z-ElcdJ9VY

- Distance: 3 cm
- Displacement: +3 cm
 - The positive gives the ant a direction!

Find the ant's distance and displacement again.

Distance: 3 cm
Displacement: -3 cm

• Find the distance and displacement of the ant.

Distance: 7 cm
Displacement: +3 cm

 Example: The total length traveled in going from the math classroom to the library and then to the physics room is 13.0 m, whereas the displacement is −3.0 m.

Displacement and Distance in 2 Directions

- You walk 3m east.
- Than turn and go 4m North.
- What is the distance of the walk?
- Distance -

- You walk 3m east.
- Than turn and go 4m
 North.
- What is the displacement of the walk?

Pythagorean theory $A^{2} + B^{2} = C^{2}$ $3^{2} + 4^{2} = C^{2}$ $9 + 16 = C^{2}$ $25 = C^{2}$ $\sqrt{25} = C$

Displacement - 5m NE

- Distance start to A 11cm
- Total Distance 11cm
- Displacement 11cm N

- Distance A to B 7cm
- Total Distance 11cm + 7cm = 18cm
- Displacement A^2 + $B^2 = C^2$
- $7^2 + 11^2 = C^2$
- $49 + 121 = C^2$
- $170 = C^2$
- $\sqrt{170} = C$
- C = 13.04 NW

- A position-time graph is an alternative way of representing data in a table.
- On a position-time graph, position data are plotted on the y axis; time data are plotted on the x axis.

 Example: Plotting the position and time contained in a table results in a position-time graph.

Table 2.1 Position and Time Data		3						
Time (s)	Position (m)	2 (E		Best fit	to data	~		
0.0	0.0	ion (Data	point	
1.0	0.5	Posit						
2.0	1.0							
3.0	1.5							
4.0	2.0	0	1		2 3	3	4	5
5.0	2.5				Tim	e (s)		

© 2014 Pearson Education, Inc.

 A best-fit line drawn through data points can be used to learn additional information about an object's motion.

- To find position at a time not in original data,
 - trace vertically from a given point on time axis to the straight line, then
 - trace sideways until you reach the position

- The slope of a straight line is equal to its rise over its run.
- Any two points may be used to calculate the slope of a straight line.
- On a position-time graph the rise corresponds to the an object's position and the run to the elapsed time.